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Abstract

Building on developments in machine learning and prior work in the science of judicial
prediction, we construct a model designed to predict the behavior of the Supreme Court
of the United States in a generalized, out-of-sample context. To do so, we develop a
time evolving random forest classifier which leverages some unique feature engineering
to predict more than 240,000 justice votes and 28,000 cases outcomes over nearly two
centuries (1816-2015). Using only data available prior to decision, our model
outperforms null (baseline) models at both the justice and case level under both
parametric and non-parametric tests. Over nearly two centuries, we achieve 70.2%
accuracy at the case outcome level and 71.9% at the justice vote level. More recently,
over the past century, we outperform an in-sample optimized null model by nearly 5 %.
Our performance is consistent with, and improves on the general level of prediction
demonstrated by prior work; however, our model is distinctive because it can be applied
out-of-sample to the entire past and future of the Court, not a single term. Our results
represent an important advance for the science of quantitative legal prediction and
portend a range of other potential applications.

Introduction 1

As the leaves begin to fall each October, the first Monday marks the beginning of 2

another term for the Supreme Court of the United States. Each term brings with it a 3

series of challenging, important cases that cover legal questions as diverse as tax law, 4

freedom of speech, patent law, administrative law, equal protection, and environmental 5

law. In many instances, the Court’s decisions are meaningful not just for the litigants 6

per se, but for society as a whole. 7

Unsurprisingly, predicting the behavior of the Court is one of the great pastimes for 8

legal and political observers. Every year, newspapers, television and radio pundits, 9

academic journals, law reviews, magazines, blogs, and tweets predict how the Court will 10

rule in a particular case. Will the Justices vote based on the political preferences of the 11

President who appointed them or form a coalition along other dimensions? Will the 12

Court counter expectations with an unexpected ruling? 13

Despite the multitude of pundits and vast human effort devoted to the task, the 14

quality of the resulting predictions and the underlying models supporting most forecasts 15

is unclear. Not only are these models not backtested historically, but many are difficult 16

to formalize or reproduce at all. When models are formalized, they are typically 17
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assessed ex post to infer causes, rather than used ex ante to predict future cases. As 18

noted in [1], “the best test of an explanatory theory is its ability to predict future 19

events. To the extent that scholars in both disciplines (social science and law) seek to 20

explain court behavior, they ought to test their theories not only against cases already 21

decided, but against future outcomes as well.” 22

Luckily, the Court provides a new opportunity to test each year. Thousands of 23

petitioners annually appeal their cases to the Supreme Court. In most situations, the 24

Court decides to hear a case by granting a petition for a writ of certiorari. If that 25

petition is granted, the parties then submit written materials supporting their position 26

and later provide oral argument before the Court. After considering the case, each 27

participating Justice ultimately casts his or her vote on whether to affirm or reverse the 28

status quo (typically seen through the lens of a decision by the lower court or special 29

master). Over the last decade, the Court has issued between 70-90 opinions per term for 30

an average of approximately 700 Justice votes per term. 31

While many questions could in principle, be evaluated, the Court’s decisions offer at 32

least two discrete prediction questions: 1) will the Court as a whole affirm or reverse 33

the status quo judgment and 2) will each individual Justice vote to affirm or reverse the 34

status quo judgment? 35

In this paper, we describe a prediction model answering these two questions as 36

guided by three modeling goals: generality, consistency, and out-of-sample applicability. 37

Building on developments in machine learning and the prior work of [1], [2] and [3], we 38

construct a model to predict the voting behavior of the Court and its Justices in a 39

generalized, out-of-sample context. As inputs, we rely upon the Supreme Court 40

Database (SCDB) and some derived features generated through feature engineering. 41

Our model is based on the random forest method developed in [4]. We predict nearly 42

two centuries of historical decisions (1816-2015) and compare our results against 43

multiple null (baseline) models. 44

Using only data available prior to decision, our model outperforms all baseline 45

models at both the Justice and Court observation level under both parametric and 46

non-parametric tests. This performance is consistent with, and improves on the general 47

level of prediction demonstrated by prior work; however, our model is distinctive 48

because it can be applied out-of-sample to the entire past and future of the Court, not 49

just a single term. Finally, our conclusion suggests areas for future improvement and 50

collaboration. Our results represent a significant advance for the science of quantitative 51

legal prediction and portend a range of potential applications, such as those described 52

in [5]. 53

Research Principles and Prior Work 54

In this section, we describe the principles guiding our model construction and how we 55

conducted our testing in light of prior work on the topic. 56

Generality 57

Leveraging the early work of [6], both [1] and [3] developed a classification tree model 58

which was designed to predict the behavior of Supreme Court Justices for the 2002-2003 59

Supreme Court term. Their work represents a seminal contribution to the science of 60

legal forecasting as their classification tree models not only performed well in absolute 61

terms, but also matched or outperformed a number of subject matter experts. 62

Despite its contribution to the field, however, the approach undertaken in [1] and [3] 63

was limited in several important ways. For example, their model construction is only 64

applicable to a single “natural court” with full participation, i.e., cases where all of a 65
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specific set of Justices are sitting. The natural court tested in their paper, following 66

Justice Stephen G. Breyer’s appointment in 1994, was one of the longest periods 67

without personnel changes on the Court, providing their models with an unusually large 68

training sample. It is not possible, however, to evaluate their model in periods prior to 69

1994 or after 2005 following the replacements of Chief Justice William H. Rehnquist and 70

Justices Sandra Day O’Connor, David H. Souter, and John Paul Stevens. As a result of 71

these issues, the performance and nature of the model cannot necessarily be generalized 72

to all Supreme Court cases during their test period, let alone cases before or after their 73

tested natural court. 74

Our first principle, generality, is based on these observations. As the composition of 75

the Court changes case-by-case or term-by-term, either through recusal, retirement, or 76

death, a prediction model should continue to generate predictions. The properties and 77

performance of a prediction model should also be able to be studied across time and 78

“abnormal” circumstances (e.g., cases with original jurisdiction or fewer than nine 79

Justices). Therefore, our goal is to construct a model that is general - that is, a model 80

that can learn online, in a manner similar to online learning models described in [7] 81

and [8]. 82

Consistency 83

Second, we prefer the model to have consistent performance across time, case issues, 84

and Justices. Similar to our motivation for generality, existing models have had 85

significantly varying performance over time and across Justices. To support the case for 86

a model’s future applicability, it should consistently outperform a baseline comparison. 87

Both legal scholars and practicing lawyers have had difficulty leveraging prediction 88

models [5]. Among other difficulties, qualitatively-oriented legal experts tend to suggest 89

model improvements based on anecdote and/or their own untested mental model. 90

However, if these ostensible improvements cannot be systematically inferred from data, 91

or if their impact on the model is detrimental in other periods or for other Justices, 92

then they ought not be included in a model engineered for consistency. 93

While prediction models can be applied in many contexts, consistency can also be 94

related to a risk preference in a repeated betting scenario. For example, instead of 95

preferring the highest per-wager expected value (i.e., maximum accuracy), a bettor 96

might prefer a wager with less volatility or long-term downside risk. 97

Both consistency and generality can be seen as related to overfitting and the 98

bias-variance trade-off. But in addition to the typical learning problems under a 99

stationary system, we are faced with a more complex reality. Court outcomes are 100

potentially influenced by a variety of dynamics, including public opinion as in [9], 101

inter-branch conflict [10], both changing membership and shifting views of the Justices 102

as explored in [11] [12], and judicial norms and procedures [13]. The classic adage “past 103

performance does not necessarily predict future results” is very much applicable. For 104

example, likely due to changes in norms, the number of cases per term has fallen from 105

approximately 150 between 1950-1990 to less than 90 between 1990-2015. Consider 106

another famous historical example, as explored in [14] and [15], when the aftermath of 107

President Franklin D. Roosevelt’s attempted Court-packing plan in 1937 resulted in a 108

significant turnover of Justices in years that followed. Each of these and other changes 109

represents a challenge to a model engineered with consistency as a goal. 110

Out-of-Sample Applicability 111

Our third model principle is out-of-sample applicability. Namely, all information 112

required for the model to produce an estimate should be knowable prior to the date of 113

decision. This is in contrast with models like [2], which require partial knowledge about 114

Version 2.02 - 01.16.17 3/18



the outcome to predict the full outcome. This principle is arguably the most important, 115

as it allows for the model to generate predictions in advance, i.e., predictions that can 116

be applied usefully in the real world. 117

While existing approaches like [1], [2] and [3] may honor one or two of these 118

principles, none simultaneously achieve all three above, severely limiting their general 119

applicability. Both [1] and [3] are predictive out-of-sample but fail to be general enough 120

to apply widely or consistent when tested. By contrast, [2] is general across terms and 121

consistent, but not predictive out-of-sample since it requires knowledge of some votes to 122

predict others. As detailed further below, our approach is the first that satisfies all 123

three of these criteria, and thus represents a significant advance in the science of 124

quantitative legal prediction. 125

Data and Feature Engineering 126

SCDB 127

In order to build our model, we rely on data from the Supreme Court Database 128

(SCDB) [16]. SCDB features more than two hundred years of high-quality, 129

expertly-coded data on the Court’s behavior. Each case contains as many as two 130

hundred and forty variables, including chronological variables, case background 131

variables, justice-specific variables, and outcome variables. Many of these variables are 132

categorical, taking on hundreds of possible values; for example, the ‘issue’ variable can 133

take 384 distinct values. These SCDB variables form the basis for both our features and 134

outcome variables. 135

SCDB is the product of years of dedication from Professor Harold Spaeth as well as 136

many others. The database has been consistently subjected to reliability analysis and 137

has been used in hundreds of academic studies (e.g., [11], [17], [18], [19], [20], [21], 138

[22], [23]). While there are serious and important limits to SCDB, as detailed in [24], 139

SCDB is the highest-quality and longest-duration database for Supreme Court decisions. 140

There are currently two releases of SCDB: SCDB Modern and SCDB Legacy. The 141

SCDB Modern release contains terms beginning in 1946, while the SCDB Legacy release 142

contains terms beginning in 1791. When [25], an earlier pre-print version of this paper 143

was released, SCDB Legacy had not yet been released. As SCDB Legacy represents 144

more than a threefold increase in the length of simulation history and size of training 145

data, we have re-run all model construction and analysis for the new data release; 146

methods and results from [25] are thus superseded by this paper. 147

Targets 148

To model Supreme Court decisions, we need to define an outcome variable from SCDB 149

corresponding to a decision. Typically, Court-watchers frame decisions as either 150

affirming or reversing a lower court’s decision. This, however, is only consistent with 151

cases heard on appeal. In some circumstances, the United States Supreme Court is the 152

court of original jurisdiction, and there is therefore no lower court against which to 153

frame reversal. In these cases, decisions are typically framed as either siding with the 154

plaintiff(s) or defendant(s). In addition, the Court and its members may take 155

technically-nuanced positions or the Court’s decision might otherwise result in a 156

complex outcome that does not map onto a binary outcome. 157

In order to build a general model that can handle all cases, we created a disposition 158

coding map that defines a Justice vote as (i) Reversed, (ii) Affirmed, or (iii) Other, 159

depending on a Justice’s vote and the SCDB’s caseDisposition’ variable. This 160

disposition coding map is outlined in our Github repository [26]. Our mapping displays 161
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Justice vote values by column and Court ‘caseDisposition’ values by row. The case 162

outcome is defined as Reverse if there are more total Reverse votes than Affirm votes; 163

notably, Other votes, which may include recusals or non-standard form decisions, are 164

excluded from the vote aggregation. Table 1 below displays the distribution of Reverse, 165

Affirm, and Other coding by Justice outcome and case outcome. 166

Table 1. Outcome Distribution (1816-2015)

Class Justice Case
Affirm 113,454 16,718

Reverse 93,161 11,291
Other 37,267 NA

Total 243,882 28,009

Features and Feature Engineering 167

With the outcome variable specified, we proceed next to describe the SCDB features 168

used and feature engineering we performed. SCDB contains a wide range of potential 169

features, and the majority of these are categorical variables. In our study, we begin with 170

the following features available from SCDB: Justice (ID), term, natural court, 171

month of argument, petitioner, respondent, manner in which Court took 172

jurisdiction, administrative action, court of origin and source of the case, 173

lower court disagreement, reason for granting cert, lower court 174

disposition, lower court direction, issue, and issue area. For each of these 175

variables, we follow standard practice and convert the categorical variables into binary 176

or indicator variables. For example, in the case of reason for granting cert, there are 13 177

categories used in SCDB. Therefore, the single ‘certReason’ variable is converted to 178

13 binary or indicator variables - one for each possible option. 179

In addition to simple feature encoding, we also engineer features that do not occur in 180

SCDB as released. The first set of features that we engineer are related to the Circuit 181

Court of Appeals from which the dispute arose. SCDB codes this data in the form of 182

the case source and case origin, where the source corresponds to the opinion under 183

review and the origin corresponds to the location of original filing. While there are over 184

130 unique courts that these variables may be coded as, scholars primarily group them 185

by Circuit; Circuits have been shown to be a strong predictor of reversal during certain 186

periods, as shown in [27]. Based on this guidance, we therefore developed a translation 187

from each SCDB court ID to the corresponding Circuit. The coding maps from these 188

origin and source courts to a new set of 16 categorical values, which are then binarized 189

as the raw features above. 190

The features engineered above can both be described as coarsened or collapsed. We 191

move on next to features that are derived through arithmetic or interaction of one or 192

more features. The first of this class is a set of chronologically-oriented features related 193

to oral argument and case timing. These features include (i) whether or not oral 194

arguments were heard for the case, (ii) whether or not there was a rehearing, and (iii) 195

the duration between when the cased was originally argued and a decision was rendered. 196

These features are based on the qualitative observation that the length of time between 197

argument and decision is related to the unanimity of the Court; for example, in the past 198

three terms, the ten “fastest” decisions of each term have nearly all been unanimous 9-0. 199

Item (iii) may seem at first to include future or out-of-sample knowledge. However, 200

in practice, the predictions for a case may evolve as new information about the case is 201

acquired prior to the decision being rendered. For example, when the Court announces 202

that a case will have arguments heard, the delay feature may be set to zero initially. 203
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Once the argument date passes, the delay feature is then incremented periodically. 204

After each time step that passes, the feature matrix for undecided cases is updated, and 205

the resulting predictions may therefore change. Consistent with “online” learning 206

approaches such as [7] and [8], this does not require out-of-sample information; it only 207

requires that the data and algorithm be re-run on a specified time interval for any 208

undecided cases in a term. 209

Lastly, we engineer features that summarize the “behavior” of a Justice, the Court, 210

the lower court, and differences between them. These features fall into three categories: 211

(i) features related to the rate of reversal, (ii) features related to the left-right direction 212

of a decision, and (iii) features related to the rate of dissent. These features can be 213

thought of as conditional empirical probabilities. For example, (i) includes, at a given 214

term and for a given justice, the historically-observed proportion of votes to reverse. 215

Importantly, in addition to calculating these values for each justice, we also include 216

difference terms between the Court as a whole and the individual justice. These 217

difference terms are, qualitatively, the relative inclination of a Justice to reverse 218

compared to the Court. We repeat these calculations for other justice-specific features 219

including direction and agreement features, providing quantitative measures of left-right 220

political preference and rate of dissent. In addition, we include a difference term 221

between the lower court’s decision direction and the Justice’s historically-observed mean 222

direction; this provides a measure of how far apart, ideologically, the Justice is from the 223

lower court’s opinion on review (excepting original jurisdiction cases). Together, these 224

features provide relative information about Courts’ and Justices’ political and 225

procedural leanings; for example, we find that reversal rates vary significantly even in 226

the last 35 years at both the Court and Justice level. 227

Model Construction 228

With features and outcome data defined, we proceed to discuss the construction of our 229

model. While this section provides a general overview of modeling procedures, readers 230

interested in the technical details should review the Github repository accompanying the 231

paper, [26]; all source code and data required to reproduce the results presented are 232

freely available there. The model is developed in Python and all methods described 233

below, unless otherwise indicated, are from scikit-learn 0.18 [28]. 234

The modeling process begins by selecting a term T ∗; in order to satisfy our three 235

principles above, no information from term T ∗ or after should be available during the 236

training phase. If we let each docket-vote feature vector di and docket-vote outcome vi 237

have term T (di), then our training feature set for model term T ∗ is 238

DT = {di : T (di) < T ∗} and our training target set VT corresponds to matching vi 239

records. While some information may be known intra-term, i.e., for {di : T (di) = T ∗}, 240

this modeling procedure only retrains at the outset of each term. For example, while 241

some decisions in term T ∗ may have been observed by December, cases in January are 242

predicted using only information prior to October. Other than the incremental delay 243

feature discussed above, no information derived from the current court term is 244

incorporated into the model until the start of the following term. 245

While we represent D and V above as sets of vectors, we can easily consider it to be 246

a feature matrix with each docket-vote in a row and each feature in a column. As of 247

2015, D2015 based on SCDB Legacy (beta) has 249,793 docket-votes; under our feature 248

engineering approach described above, D2015 has 1,501 columns. In many machine 249

learning approaches, we might pre-process D by rescaling, rotating, interacting, or 250

removing columns. Random forest classifiers, especially when applied to binarized or 251

indicator variables, do not generally require pre-processing. Furthermore, random 252

subspace methods like random forests implicitly remove or “select” features by 253
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subsetting the feature space for each sub-learner tree. One weakness of the scikit-learn 254

implementation of random forests relative to alternatives like xgboost, however, is its 255

treatment of missing data. In most cases, this is handled by mapping missing values to 256

a separate “missing” indicator column during encoding; in some cases, however, a 257

historical mean imputation may be used. However, no additional feature selection or 258

pre-processing methods are applied to D prior to learning. 259

We next apply a learning algorithm to D and V . As noted previously, we selected a 260

random forest classifier [4]. Random forests are part of the family of ensemble methods. 261

Ensemble methods leverage the wisdom of the statistical crowds. In the case of random 262

forest classifiers, we construct a forest of statistically diverse trees using bootstrap 263

aggregation on random substrates of our training data. To cast predictions, we simply 264

calculate predictions for each of our individual trees and then average across the entire 265

forest. While an individual statistical learner (a single tree) might offer an 266

unrepresentative prediction of a given phenomenon, the crowdsourced average of a 267

larger group of learners is often better able to forecast various sets of outcomes. By 268

generating many different decision trees with diverse information sets and then 269

averaging over the results, ensemble methods can convert a set of otherwise weak 270

learners into a collectively strong learner. 271

Not only have random forests proven to be “unreasonably effective” in a wide array 272

of supervised learning contexts [29], but in our testing, random forests outperformed 273

other common approaches including support vector machines (LibLinear, LibSVM) and 274

feedforward artificial neural network models such as multi-layer perceptron implemented 275

with [30]. For details of the implementation, interested readers are directed to the 276

scikit-learn documentation [28] and [31] in particular. 277

Of some note, however, is our experimentation with the warm start parameter to 278

“grow” the forest online. Recall that at the beginning of each term, the model is retrained 279

to incorporate newly observed data. In [25], we built a “fresh” forest model each term 280

with number of trees selected by cross-validated hyperparameter search. In these 281

published results, however, we have simulated performance using both “fresh” forests 282

and “growing” forests, in which trees are added to an existing forest. Only under certain 283

circumstances, such as the changing of the natural court; following the addition or loss 284

of a Justice, does the model build a “fresh forest”. For example, the models used to 285

produce this paper’s results were trained with 125 initial trees beginning in 1816 (5 ∗ 25 286

trees, five for each term between 1791-1816). Each term, in the absence of a natural 287

court change, an additional five trees were trained and added to the prior term’s forest. 288

Our implementation of this “growing” approach allows for substantially faster 289

simulation times and more stable predictions, as it only need train a small number of 290

trees per step. Equally important is that most trees in the forest are stable for most 291

years, and so the same inputs in year T and T + 1 are likely to produce the same 292

predictions. 293

Generally speaking, most learners benefit from joint cross-validation and 294

hyperparameter search. For the “fresh” forest approach, in which a new random forest 295

is built each term, we performed a number of experiments by grid-searching the number 296

of trees, minimum number of leaves per node, maximum depth per tree, heuristic used 297

to select the number of features per tree (e.g., log, sqrt), and split criterion (e.g., Gini 298

vs. entropy) for each model retraining, i.e., for each term. This approach allows the 299

parameters to adapt over the nearly 200 years of change in historical sample 300

composition and size. However, we found that the marginal improvement in accuracy 301

and F1 were not worth the substantial increase in computational requirement and 302

decreased stability of predictions. In the simple examples included in the Github 303

repository, a cross-validated hyperparameter does not have a noticeable impact on 304

accuracy over “default” random forest configuration. 305
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As a whole, our model construction applies standard pre-processing and learning 306

approaches within each step, but experiments with purposeful and atypical design 307

around longitudinal model application. For simplicity of subsequent presentation and 308

replication, only the “growing” forest approach described above with five trees per step 309

is presented. All source and results are available at [26] for a reader interested in the 310

details of model specification and implementation. 311

Model Testing and Results 312

The data and model described above allow us to simulate out-of-sample performance for 313

nearly 200 terms at the Supreme Court. However, there is no single approach to 314

assessing performance in this context. Below, we present standard, un-adjusted machine 315

learning diagnostic results derived from the application of our prediction model. We 316

present both results at the justice level (i.e., our performance on predicting the votes of 317

individual justices) and our performance at the case level (i.e., predicting the overall 318

outcome of the Court). Then, we compare our accuracy to that of several potential 319

“null” or “baseline” models. 320

Performance of Case and Justice Prediction Model 321

Justice Level Prediction Results 322

To begin, we present the results of our Justice vote prediction model. Recall that the 323

Justice-level model predicts whether the vote will fall into three classes (Affirm, Reverse, 324

Other), but that the outcome at the case-level depends on whether or not a given 325

Justice’s votes are Reverse or not. As a result, in Table 2 and Table 3 below, we present 326

precision, recall, and F1 results for both three-class and two-class problems in the tables 327

below. In total, over the period from 1816-2015, our model exhibits accuracy of 71.9% 328

at the Justice vote level. 329

Table 2. Justice-vote performance (three-class), un-adjusted assessment

Class Precision Recall F1-score Support
Affirm 0.61 0.79 0.69 113,666

Reverse 0.64 0.48 0.55 93,569
Other 0.84 0.59 0.69 39,540

Mean/Total 0.66 0.64 0.64 246,775

Table 3. Justice-vote performance (two-class), un-adjusted assessment

Class Precision Recall F1-score Support
Not Reverse 0.73 0.84 0.78 153,206

Reverse 0.64 0.48 0.55 93,569

Mean/Total 0.69 0.70 0.69 246,775

Case Level Prediction Results 330

An alternative but related prediction task is the prediction of case outcomes. While 331

better understanding the behavior of Justices is of interest to some court observers, the 332

prediction of case outcomes is the key capability that motivates litigants and can move 333

markets [32]. Table 4 presents case-level results from our prediction model. The 334

predicted case outcome is determined from whether or not the majority of individual 335
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Justice votes favor reversing the prior status quo. Starting in 1816 and carrying through 336

the conclusion of the October 2014 term, our model correctly predicts 70.2% of the 337

Court’s decisions. 338

Table 4. Case prediction performance, un-adjusted assessment

Class Precision Recall F1-score Support
Not Reverse 0.71 0.83 0.77 16,748

Reverse 0.67 0.50 0.57 11,340
Mean/Total 0.70 0.70 0.69 28,080

Tables 2, 3 and 4 provide the overall performance of our model (1816-2015). Figure 339

1, by contrast, demonstrates the consistency and generality of our approach over nearly 340

two hundred years at both the case and justice level. While some years and some 341

decades are better than others, our model typically delivers stable performance for both 342

cases outcomes and the votes of individual justices. 343

Fig 1. Case and Justice Accuracy 1816-2015 (by Term) Time series of the
accuracy of our prediction model at both the case level (left pane) and justice level
(right pane)

Candidate Baseline (Null) Models 344

But are the results above “good?” To meaningfully answer this question requires the 345

development of a plausible baseline or null model. Specifically, while our approach may 346

outperform an unweighted coin flip for both the two-class and three-class problems 347

(50% and 33%, respectively), few legal experts would rely on an unweighted coin as a 348

null model against which to compare their predictions. Instead, informed by recent 349

years, common wisdom among the legal community is that the baseline betting strategy 350

should be to always guess Reverse. This strategy is supported by the recent history of 351

the Court over the last 35 terms: 57% of Justice votes and 63% of case outcomes have 352

been Reverse. However, this wisdom is quickly drawn into question when a broader view 353

of history is taken into account, as Figure 2 demonstrates below. This trend is even 354
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more unbalanced when one considers the significant reduction in docket size over the 355

past few decades, resulting in even more Affirm observations in previous years. 356

Fig 2. Reversal Rate by Decade For most of the Court’s history, Reversal was
much less frequent than it is now. Only in recent history has Reversal become the more
common outcome.

Since common wisdom appears too myopic to use as a historical baseline, we instead 357

propose two additional null models to also use as comparisons. Specifically, in addition 358

to the always guess Reverse heuristic, consider two simple and similarly-intentioned 359

rules: a most-frequent guessing strategies with an “infinite” memory and another with a 360

“finite” memory. The infinite memory baseline model, for a term T , simply guesses the 361

most frequent outcome as observed in DT . This model is most aligned with the spirit of 362

common wisdom; however, as seen in Table 1, it results in a model that would still 363

predict Affirm for the modern Court, and it has therefore significantly underperformed 364

for the last 50 years. In fact, at the current rate of dockets per year, it would take 365

multiple decades worth of unanimous 9-0 decisions before this model would switch to 366

predicting Reverse. 367

Therefore, we instead focus on an adapted most-frequent model featuring a “finite 368

window” or “moving average.” Instead of determining the most frequent outcome over 369

all history up to term T , only cases decided within the last M < T terms are used. 370

This memory parameter M introduces a common hyper-parameter into the model 371

definition. The optimization of “memory” parameters is a frequent challenge in many 372

learning situations, especially “online.” In less technical terms, the optimization of M 373

can be reframed as a simple question: how much of the past is useful for predicting the 374

future? As is demonstrated by Figure 2, it is often unclear when one should change 375

strategy as underperformance is experienced. It should be noted that this issue affects 376

not just models in machine learning, but especially individual human experts 377

attempting to leverage their personal experience and mental models. 378

While it is not possible to learn the optimal size of M for all future states of the 379

world, in our experiments, reproduced in our Github repository [26], we have settled on 380

a value of M = 10. Not only does M = 10 provide an easily-understood “prior decade” 381
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baseline, but also by selecting this as our memory window, we are able to test our 382

prediction model against a null model built upon a value of M that is nearly globally 383

optimal for case accuracy. In other words, as M = 10 is essentially derived by 384

optimizing the M hyperparameter in-sample, i.e., using “future information,” this 385

further advantages the baseline model and substantially hampers our efforts to 386

outperform the null. Despite this challenge, as demonstrated below, we still outperform 387

the optimized baseline model over the past two centuries. 388

Tables 5, 6 and 7 present the results from the justice and case-level for the M = 10 389

“finite” memory null model. Similar to the results reported for prediction model, Table 5 390

displays the performance for the M = 10 at the case level. As above, the predicted case 391

outcome is determined from whether the individual Justice votes are Reverse or Not 392

Reverse. In sum, optimizing the finite memory window using in sample information 393

yields justice-level accuracy of 66.2% and case-level accuracy of 67.5% from 1816-2015. 394

Table 5. Justice-vote performance (three-class), baseline model assessment

Class Precision Recall F1-score Support
Other 0.33 0.01 0.02 39,540

Affirm 0.52 0.77 0.62 113,666
Reverse 0.57 0.46 0.51 93,569

Mean/Total 0.50 0.53 0.48 246,775

Table 6. Justice-vote performance (two-class), baseline model assessment

Class Precision Recall F1-score Support
Not Reverse 0.70 0.78 0.74 153,206

Reverse 0.57 0.46 0.51 93,569

Mean/Total 0.65 0.66 0.65 246,775

Table 7. Case prediction performance, baseline model assessment

Class Precision Recall F1-score Support
Not Reverse 0.69 0.81 0.75 16,740

Reverse 0.63 0.47 0.54 11,340
Mean/Total 0.67 0.67 0.66 28,080

Comparison against Baseline Models 395

Above, we described three separate baseline models against which comparison might be 396

undertaken: (1) the always guess Reverse model, (2) the infinite memory model, 397

M =∞, and (3) the optimized finite memory model, M = 10. At both the case and 398

justice level, Figure 3 compares our prediction model to each of these null models. The 399

left column corresponds to case accuracy, and the right column corresponds to justice 400

accuracy. The first row corresponds to M = 10, the second row corresponds to M =∞, 401

and the third row corresponds to always guess Reverse. When our model outperforms 402

the baseline, the plot is shaded green; when it fails to exceed the baseline performance, 403

the plot is shaded red. 404

With respect to justice-level prediction, even a cursory review of Figure 3 405

demonstrates that our model performs very well against all baseline models across most 406

of the last two centuries. Our model also performs well on the case-level predictions. 407

Our approach especially outperforms both the always guess reverse heuristic and the 408

infinite memory window during large, sustained periods. 409
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Fig 3. Case and Justice Accuracy Compared Against Null Models The first
row corresponds to M = 10, the second row corresponds to M =∞, and the third row
corresponds to always guess Reverse. The left column corresponds to case accuracy, and
the right column corresponds to justice accuracy. When our model outperforms the
baseline, the plot is shaded green; when it fails to exceed the baseline performance, the
plot is shaded red.

After more than a century of soundly defeating all three null models, the 410

performance of our prediction model has dipped during in the Roberts Court (as 411

compared against the always guess reverse heuristic and M=10 null model). Within the 412

scope of this study, it is difficult to determine whether this represents some sort of 413

systematic change in the Court’s macro-dynamics. However, thus far, it does appear 414
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that the Roberts Court is less predictable than its immediate predecessors. 415

Flattening the data by taking each term as the relevant unit of analysis, Figure 4 416

offers an alternative perspective on our performance. Figure 4 scores each term by 417

comparing our performance to that of the null model. We assign a score of +1 to term 418

where our model outperforms the null model, -1 in any term where our model performs 419

worse than null model and 0 for any term where our model and the null offer identical 420

performance. Given the results previously displayed in Figure 3, we only consider the 421

M=10 null model for purpose of this analysis. Figure 4 plots the cumulative score of 422

this tally as a function of time. 423

1
8

1
6

1
8

2
6

1
8

3
6

1
8

4
6

1
8

5
6

1
8

6
6

1
8

7
6

1
8

8
6

1
8

9
6

1
9

0
6

1
9

1
6

1
9

2
6

1
9

3
6

1
9

4
6

1
9

5
6

1
9

6
6

1
9

7
6

1
9

8
6

1
9

9
6

2
0

0
6

2
0

1
6

-25

0

25

50

75

Fig 4. Cumulative Number of Terms Won Versus M=10 Null Model

A review of both Figure 3 and Figure 4 reveals that our prediction model initially 424

struggles to outperform the M = 10 finite memory null model. Several potential factors 425

likely contribute to this. For example, as noted earlier, the M = 10 null is in sample 426

optimized. Thus, the derivation of the memory window through hyperparameter 427

optimization is actually leveraging future information. By leveraging this class of future 428

information, the in sample optimization of M appears to be better able than our model 429

at fitting to some of the actual dynamics present in the early years of the Court. 430

As the size of the training data increases, our model eventually surpasses the null. 431

Namely, our twenty five year learning period (1791-1816) appears insufficient such that 432

it requires several additional decades for our model to be able to consistently extract 433

the signal from the noise. In addition, the ultimate success of our model vis-à-vis the 434

null model is likely also driven by some increased level of behavioral stability on behalf 435

of the Court starting in the second half of the nineteenth century. As reflected in Figure 436

4, starting after the conclusion of the American Civil War and in particular at the 437

outset of the Fuller Court, our model begins to consistently outperform the in sample 438

optimized null model. 439

Beyond performance on a term-by-term basis, another perspective on the 440

performance of our model is to see how it performs on a justice-by-justice basis. At the 441

justice-by-justice level over the past 100 years, Figure 5 displays our justice level 442
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Fig 5. Justice-Term Accuracy Heatmap Compared Against M=10 Null
Model (1915 -2015). Green cells indicate that our model outperformed the baseline
for a given Justice in a given term. Pink cells indicate that our model only matched or
underperformed the baseline. The deeper the color green or pink, the better or worse,
respectively, our model performed relative to the M=10 baseline.

performance against the most challenging of null models (i.e., the M = 10 finite 443

memory window). While careful inspection of Figure 5 allows the interested reader to 444

explore the Justice-by-Justice performance of our model, a high level review of Figure 5 445

reveals the basic achievement of our modeling goals as described earlier. While we 446

perform better with some Justices than others and better in some time periods than 447

others, Figure 5 displays generalized and consistent mean-field performance across many 448

Justices and many historical contexts. 449
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Statistical Evaluation of Model Performance Against the Null 450

Models 451

While Figures 3, 4 and 5 as well as Tables 2 through 7 offer basic evidence regarding the 452

performance of our model, we can now proceed to statistically measure the degree of 453

confidence in our outperformance against the null. For completeness, in Table 8, we 454

present the results of three tests for both our justice and case-level prediction models 455

compared against the M = 10 null model: (i) a paired t-test on annual case accuracy 456

series, (ii) a Wilcoxon rank-sum test on annual case accuracy series, and (iii) a binomial 457

test on per-case outcomes. Tests (i) and (ii) evaluate whether, both under parametric 458

and non-parametric assumptions, our model outperforms the baseline model at an 459

aggregate, longitudinal level as measured by annual accuracy. Test (iii), on the other 460

hand, tests whether the distribution of individual model predictions is significantly 461

better than a “fairly”-weighted coin flip. All tests are framed as one-sided tests that 462

require our model accuracy to be greater than the null or baseline model. 463

Table 8. Summary of statistical tests: p-value

Test Justice (3-class) Justice (2-class) Case
Paired t-test O(10−58) O(10−11) O(10−5)

Wilcoxon rank-sum O(10−38) 0.001 0.03
Binomial test ≈ 0.0 ≈ 0.0 O(10−19)

These tests indicate that our random forest model significantly outperforms the 464

baseline model, both at the aggregate, per-term level and at the per-case distribution. 465

Conclusion and Future Research 466

Building upon prior work in the field of judicial prediction [1], [2], [3], we offer the first 467

generalized, consistent and out-of-sample applicable machine learning model for 468

predicting decisions of the Supreme Court of the United States. Casting predictions 469

over nearly two centuries, our model achieves 70.2% accuracy at the case outcome level 470

and 71.9% at the justice vote level. More recently over the past century, we outperform 471

an in-sample optimized null model by nearly 5 %. Among other things, we believe such 472

improvements in modeling should be of interest to court observers, litigants, citizens 473

and markets. Indeed, with respect to markets, given judicial decisions can impact 474

publicly traded companies, as highlighted in [32], even modest gains in prediction can 475

produce significant financial rewards. 476

We believe that the modeling approach undertaken in this article can also serve as a 477

strong baseline against which future science in the field of judicial prediction might be 478

cast. While a researcher seeking to optimize performance for a given case or a given 479

time period might pursue an alternative approach, our effort undertaken herein was to 480

directed toward building a general model - one that could stand the test of time across 481

many justices and many distinct social, political and economic periods. 482

Beyond predicting U.S. Supreme Court decisions, our work contributes to a growing 483

number of articles which either highlight or apply the tools of machine learning to some 484

class of prediction problems in law or legal studies (e.g., [5], [33], [34], [35], [36], [37], 485

[38], [39], [40]). We encourage additional applied machine learning research directed to 486

these areas and new areas where the application of predictive analytics might be fruitful. 487

At its core, our effort relies upon a statistical ensemble method used to transform a 488

set of weak learners into a strong learner. We believe a number of future advancements 489

in field of legal informatics will likely rely on elements of that basic approach. Namely, 490

our focus on statistical crowd sourcing actually foreshadows future developments in the 491
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field. Future research will seek to find the optimal blend of experts, crowds [41] and 492

algorithms as some ensemble of these three streams of intelligence likely will produce 493

the best performing model for a wide class of prediction problems [42]. 494
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2. Guimerà R., Sales-Pardo M. Justice blocks and predictability of us supreme court
votes. PloS One, 2011; 6(11):e27188.

3. Ruger TW, Kim PT, Martin AD, Quinn KM. The supreme court forecasting
project: Legal and political science approaches to predicting supreme court
decisionmaking. Columbia Law Review, 2004; 104(4):1150-1209.

4. Breiman L. Random forests. Machine Learning, 2001; 45(1):5-32.

5. Katz DM. Quantitative legal prediction – or – how i learned to stop worrying and
start preparing for the data driven future of the legal services industry. Emory Law
Journal, 2013; 62(4): 909-966.

6. Breiman L, Friedman J, Stone CJ, Olshen RA. (1984) Classification and regression
trees. New York: CRC press. 358 p.

7. Saad D. (1999) On-line learning in neural networks. Cambridge: Cambridge
University Press. 398 p.

8. Shalev-Shwartz S. Online learning and online convex optimization. Foundations
and Trends in Machine Learning, 2011; 4(2):107-194.

9. Casillas CJ, Enns PK, Wohlfarth PC. How public opinion constrains the US
Supreme Court. American Journal of Political Science, 2011; 55(1):74-88.

10. Segal JA. Separation-of-powers games in the positive theory of congress and
courts. American Political Science Review, 1997; 91(1):28-44.

11. Epstein L, Martin AD, Quinn KM, Segal JA. Ideological drift among supreme
court justices: Who, when, and how important. Northwestern University Law
Review, 2007; 101(4):1483-1542.

12. Martin AD, Quinn KM. Assessing preference change on the us supreme court.
Journal of Law, Economics, and Organization, 2007; 23(2):365-385.

13. Calderia GA, Zorn C. Of time and consensual norms in the Supreme Court.
American Journal of Political Science, 1998; 42(3):874-902.

14. Ho DE, Quinn KM. Did a Switch in Time Save Nine? Journal of Legal Analysis,
2010; 2(1):69–113.

Version 2.02 - 01.16.17 16/18



15. Leicht EA, Clarkson G, Shedden K, Newman MEJ. Large-scale structure of time
evolving citation networks. The European Physical Journal B, 2007; 59(1):75-83.

16. Spaeth HJ, Epstein L, Martin AD, Segal JA, Ruger TJ, Benesh SC. 2016
Supreme Court Database, Version 2016 Legacy Release v01. (SCDB Legacy 01)
http://Supremecourtdatabase.org

17. Segal JA, Spaeth HJ (2002) The Supreme Court and the attitudinal model
revisited. Cambridge: Cambridge University Press. 480 p.

18. Bailey MA, Maltzman, F. Does legal doctrine matter? unpacking law and policy
preferences on the us supreme court. American Political Science Review, 2008;
102(3):369-384.

19. Benjamin SM, Desmarais BA. Standing the test of time: The breadth of majority
coalitions and the fate of us supreme court precedents. Journal of Legal Analysis,
2012; 4(2):445-469.

20. Martin AD, Quinn KM. Dynamic ideal point estimation via markov chain monte
carlo for the US Supreme Court, 1953-1999. Political Analysis, 2002; 10(2):134-153.

21. Segal JA, Epstein L, Cameron CM, Spaeth HJ. Ideological values and the votes of
US Supreme Court justices revisited, The Journal of Politics, 1995; 57(3):812-823.

22. Lee ED, Broedersz CP, Bialek W. Statistical Mechanics of the US Supreme
Court, Journal of Statistical Physics, 2015; 160(2): 275-301.

23. Segal JA, Spaeth HJ. The influence of stare decisis on the votes of united states
supreme court justices. American Journal of Political Science, 1996; 40(4):971-1003.

24. Shapiro C. Coding complexity: Bringing law to the empirical analysis of the
supreme court. Hastings Law Journal, 2008; 160(2):60:477.

25. Katz DM, Bommarito MJ, Blackman J. Predicting the Behavior of the Supreme
Court of the United States: A General Approach. 2014; arXiv:1407.6333

26. Bommarito MJ. Supreme Court Prediction Model v2. GitHub Repository,
https://github.com/mjbommar/scotus-predict-v2

27. Hofer RE. Supreme Court Reversal Rates: Evaluating the Federal Courts of
Appeals. American Bar Association - Landslide, 2010; 2(3):8-11.

28. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel
M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay, E. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 2011; 12:2825-2830.

29. Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning
algorithms. In: Proceedings of the 23rd international conference on Machine
learning. ACM; 2006 p. 161-168.

30. Chollet F. Keras: Deep Learning library for TensorFlow and Theano, Github,
2015; https://github.com/fchollet/keras

31. Louppe G. Understanding Random Forests: From Theory to Practice
Dissertation, University of Liege, Belgium, 2014.

Version 2.02 - 01.16.17 17/18

http://Supremecourtdatabase.org
https://github.com/mjbommar/scotus-predict-v2
https://github.com/fchollet/keras


32. Katz DM, Bommarito MJ, Soellinger T, Chen JM. Law on the Market?
Evaluating the Securities Market Impact of Supreme Court Decisions 2015;
arXiv:1508.05751

33. Aletras N, Tsarapatsanis D, Preoţiuc-Pietro D, Lampos, V. Predicting judicial
decisions of the European Court of Human Rights: A natural language processing
perspective. PeerJ Computer Science, 2016; 2:e93.

34. Harbert T. The Law Machine. IEEE Spectrum, 2013; 50(11):31-54.
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